

Circular Water Treatment Technologies The industrial approach

Rainer Haug, Janis Dohe, Hermann Kempen Kurita Europe GmbH

Agenda

- 1. Kurita Eco Journey
- 2. Challenges in Industrial Water Treatment
- 3. Steps to Circular Water Treatment Products

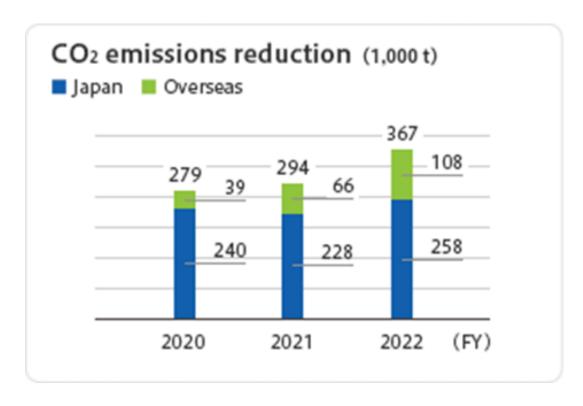
Kurita Eco Journey

Realize sustainable energy use

Reducing Kurita's in-house energy consumption

Optimize energy use at Kurita's customers' plants

	Long Term Targets			
Metrics	FY 2031	FY 2051		
Scope 1 and 2 emissions reduction (Reduction rate from FY2020)	27,5 %	100 %		
Scope 3 emissions reduction (Reduction rate from FY2020)	27,5 %			

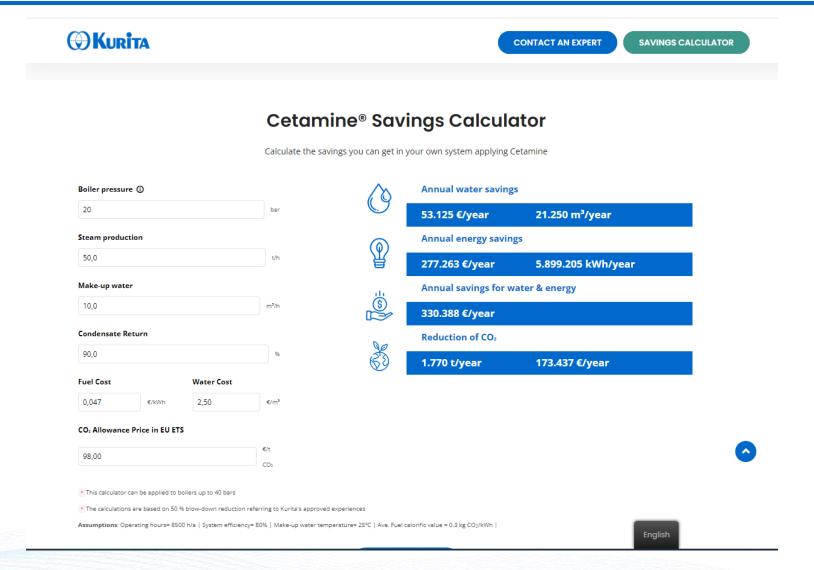


Realize sustainable energy use

CO₂ emissions reduction at customers through proposals of Kurita

Reduction in fuel use by **improving** heat efficiency in **boiler** and **cooling water** treatment.

Savings by adopting inverters in water treatment facilities


Creating Shared Value

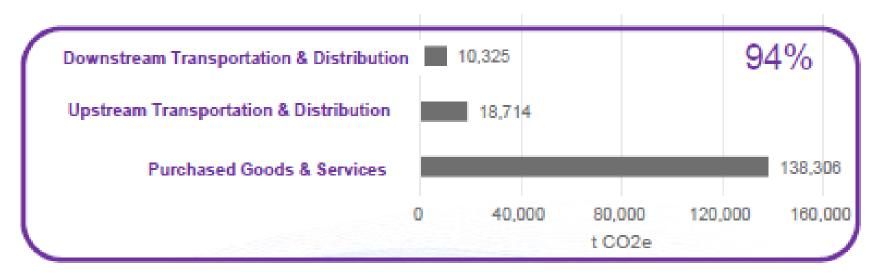
Spreading energy-creating technologies

Corporate (CCF) & Product Carbon Footprint (PCF)

Scope 1

Direct emissions (i.e. generated in own facilities)

Scope 2


Indirect emissions (i.e. purchased energy)

Scope 3

Other indirect emissions in the upstream and downstream value chain (> 90 %)

Driver of total emission is Scope 3

B

Biobased Products can reduce raw material CO₂ footprint

Challenges in Industrial Water Treatment

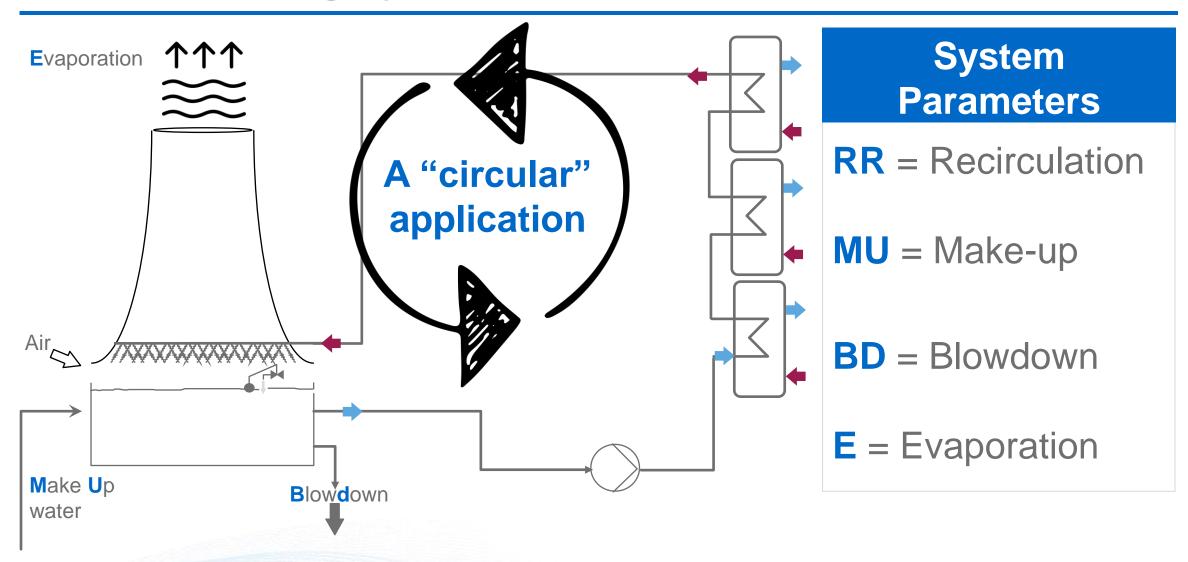
Industrial Cooling Water Principles

- Drinking water only for human consumption
- Use water according to its quality / Make water usable for intended use
- E.g. Boiler water after use still suitable for applications with lower quality demand
- Reuse Water / Blow Down CTBR

Cooling System Conditions

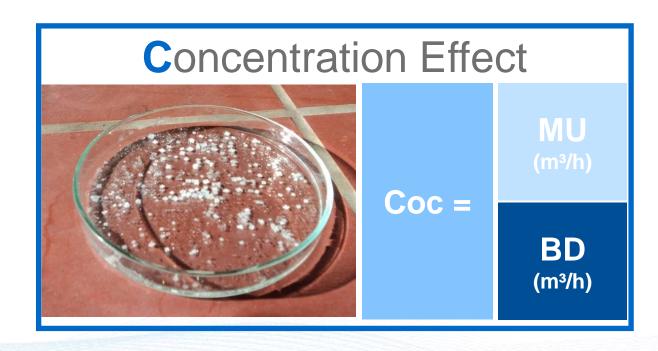
- Water Quality
- Suspended Solids
- Bacteria
- Legionella
- Airborne contamination
- Concentration effect coc
- Holding Time Index
- Temp
- . . .
- . . .

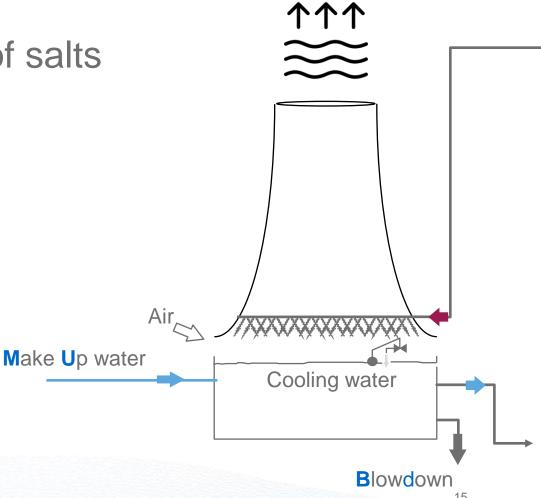
Cooling System Conditions



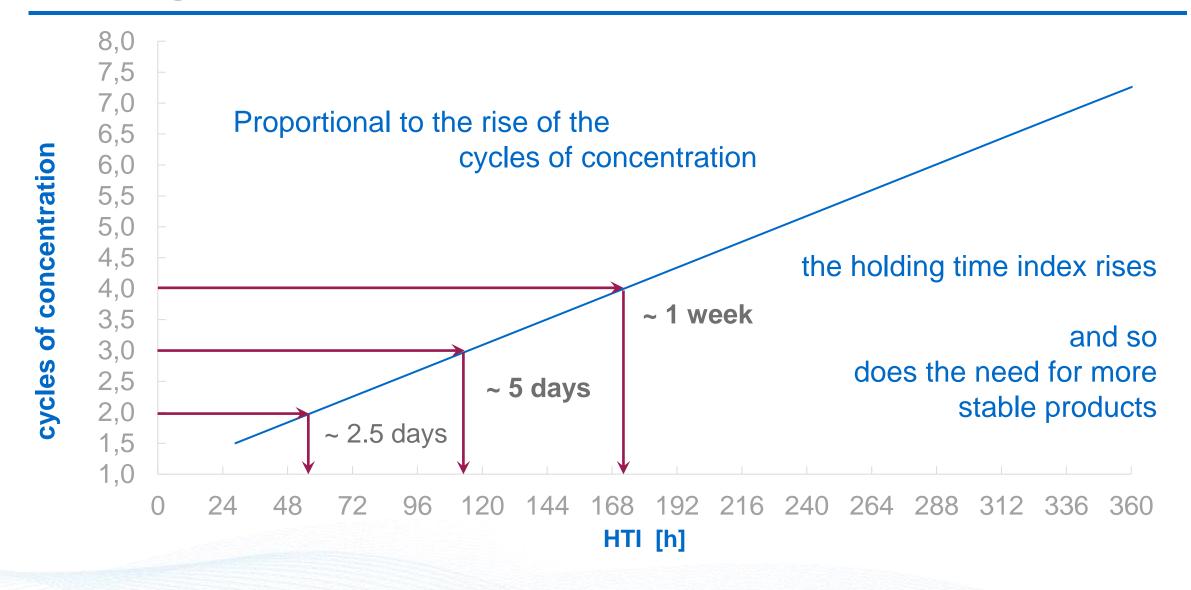
- Water Quality
- Suspended Solids
- Bacteria
- Legionella
- Airborne contamination
- Concentration effect coc
- Holding Time Index
- Temp
- •
- •

Circular Cooling System




Increased Salt Concentration due to Evaporation

Evaporation


- Only pure water (H₂O) can evaporate
- Evaporation causes the cooling effect
- Evaporation causes a concentration of salts

Holding Time Index

Cooling System Conditions

- Water Quality
- Suspended Solids
- Bacteria
- Legionella
- Airborne contamination
- Concentration effect coc
- Holding Time Index
- Temp
- •
- . . .

Microbiology

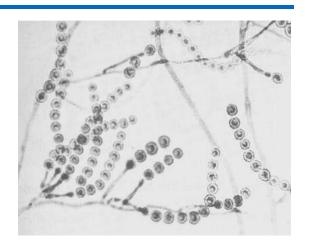
The growth of microorganisms depends on:

- ✓ Water / humidity
- ✓ Nutrients (water, materials, air)
- ✓ Temperature (psychotropic, mesophilic, thermophilic)
- √ pH value
- ✓ Time (stagnation / flow / surface)

Microbiologic categories

ALGAE

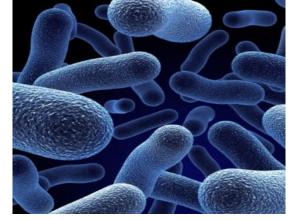
Sources: freshwater


Characteristics: grow in sunny places like cooling tower, open water basins

MOLD + FUNGI

Source: air, water, soil, wood, additives

Characteristics: most grow at acidic pH's, form spores, degrade cellulose



BIOFILM

Sources: initiated from slimeforming bacteria such as Pseudomonas aer.

Characteristics: Natural habitat of microorganisms

BACTERIA

Sources: all over in nature

Characteristic grow:
Aerobic- require O₂
Anaerobic- without O₂
Facultative- both aerobic & anaerobic environments

Steps to Circular Water Treatment Products

R&D bases to create innovations

Environmentally conscious R&D fundamentals

Spread of energy-creating technologies

Biobased Polymers at the Kurita Europe Technology Center (KETC)

KURITA INNOVATION HUB

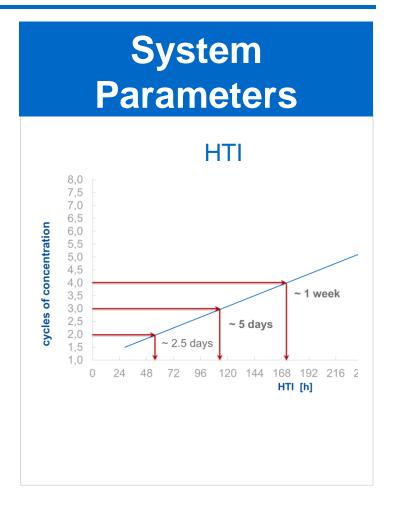
- Established in 2022 in Akishima, Tokyo, Japan
- The Technical Education Center (TEC) includes the exhibition area and training facilities
- The Technology Innovation Center (TIC) includes R&D facilities and joint research with stakeholders

KURITA EUROPE TECHNOLOGY CENTER

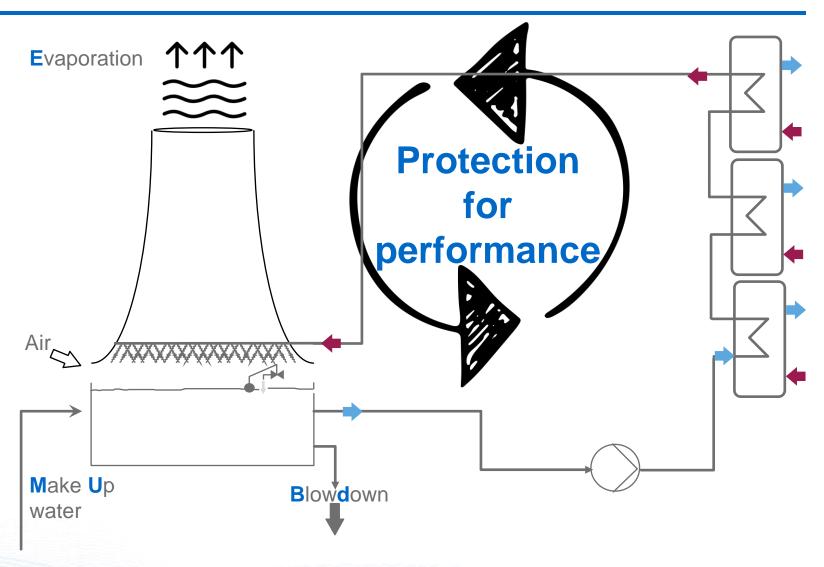
- Established in 2021 in Viersen, Germany
- Cutting-edge research and development facilities
- Equipped with an employee training center and a visitor center for introducing customers and business partners to R&D efforts.

Circular Water Treatment Products

Biodegradable


Biobased

Fit to meet the application demands


OECD 301 Ready biodegradability

- DOC Method
- Diluted product sample + bacteria suspension
- 70% removal in a 10 days window
- within the 28 days test period


- Need to protect products during use
- When released to environment no protection → biodegradation

Corrsave® 100 Technology

- Environmentally friendly & active corrosion inhibition
- Low Phosphate contribution to comply with stricter limits
- Readily biodegradable
- Reduction of corrosion and pitting
- Synergistic effect with Zn / phosphonate treatment

Circular Water Treatment Products

Biodegradable

Biobased

Fit to meet the application demands

Biobased Products – First Steps

Biobased Dispersant for organic matter

contains Natural Oils (Orange sweet)

→ Aquatox H 412

Readily biodegradable (OECD Methode)

Biobased Products

- Not automatically environmentally friendly
- Low ecotox
- No Food
- Aquatox = environment Fish, Algae, ...
 - 48 h, 72 h, 96 h

SECTION 12: Ecological information

12.1 Toxicity

Harmful to aquatic life with long lasting effects.

	Aquatic toxicity (ac		porients of the	mixture					
	Jessiance	CAS N	lo Endp	point Expos		2 Val			_
	Orange, sweet, ext.	8028-48	6 LC5	$\frac{1}{2}$	time	Value		Species	
ŀ	Orange, sweet, ext.	8028-48-			48 h	1.1 mg/	, -	danhai	
L	Orange, sweet, ext.	8028-48-6			96 h	5.65 mg/	1	daphnia magna	
	Reaction mass of 1-		LC50	'	72 h	~150 ^{mg} /	-	zebra fish (Danio rerio)	7
-	envl)cycleb-methyleth-		LC50	-	96 h			desmodesmus sub- spicatus	1
- 1	ethylide=(1-methyl-				3011	1.3 ^{mg} / _l		fish	
	4-(propan-2 l			- 1			- 1		
-	c.a-1,3-diene			- 1	- 1		-		
er	Reaction mass of 1- ethyl-4-(1-methyleth- nyl)cyclohexene and Methyl-4 (4		EL50	\rightarrow		- 1			
	ethylidenes		1250	1	48 h	3.4 mg/	1 20	Numbia i	
4-	(propan-2 vibethyl-			-	- 1		"	Juatic invertebrates	
\vdash				-	- 1		1		
Re Meti	action mass of 1- hyl-4-(1-methyleth-				- 1		1		
1-M	ethyl 4 (4		EC50	48	h	0.48 mg/ _I	\perp		
hexe	ne and 1			1	- 1	0.409/	aqua	atic invertebrates	
4-(pr	ropan-2-yl)cyclo- exa-1,3-diene			1	- 1		l		
Reac	tion			1	- 1				
envilo	r-4-(1-methyleth-		ErC50	72 h	\rightarrow				
ethy	liden - methyl-	- 1		/ "	- 1	0.42 ^{mg} / _l		algae	
4-(prophex	pan-2-yl)cyclo- a-1,3-diene								
R)-p-me	ntha-1,8-diene 598	9-27-5			1	- 1			
	330.	1-21-5	LC50	96 h	+	20.10			
					1 7	20 ^{µg} / _I		fish	

Summary

- Cooling System HTI typically > 1 week
- Biodegradabilty → bacteria
- Effect test time 10/28 days
- Aquatox = environment Fish, Algae,
 Effect test time 2-4 days

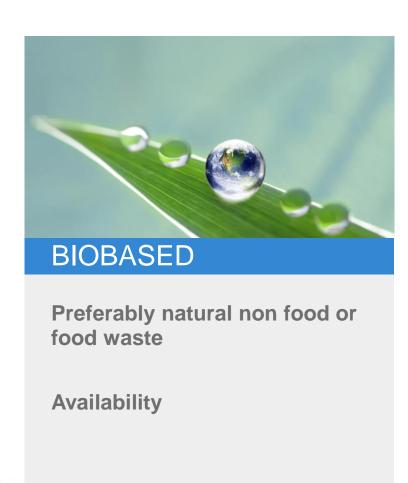
Biobased Products

Profile

Preferably natural non food or food waste

Availability

Comparable performance level to currently used products


Stable (protectable) performance in the application

Biobased Products

Profile

Low Aquatox:

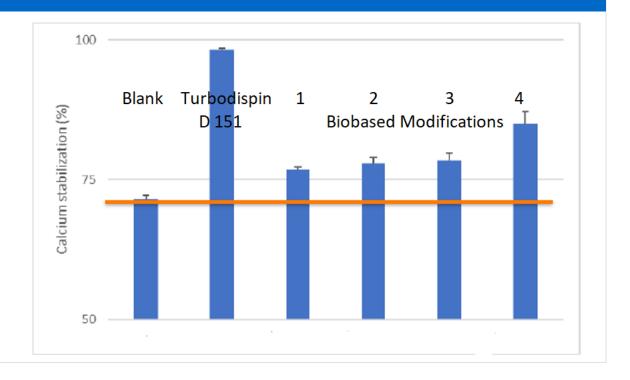
- Fish
- Algae
- Bacteria

Next Generations Biobased Scale Inhibitors

Hybrid Polymers (some already commercially available)

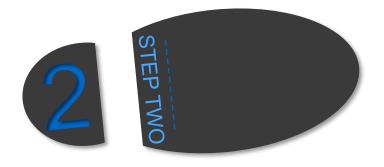
- Combination of fossil based raw material (polyacrylic) with renewal / natural raw materials (starch)
 - → Flocculants
 - → Cleaning & detergents
 - $\rightarrow \dots$
- Possible adaption for water treatment applications

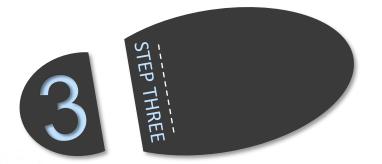
Next Generations Biobased Scale Inhibitors



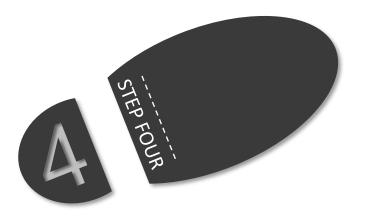
Bio Polymers (non food)

- Screening
 - → Based on algeas
 - → based on pectins




Biobased Products – Next steps

Bio Polymers (non food)



- Modifications
- Performance

- Production facilities
- REACH
-

- Biodegradation
- Aquatox

Contact us

- Kurita Europe GmbH
- Theodor-Heuss-Anlage 268165 MannheimGermany
- +49 621 1218 3000
- www.kurita.eu

EXECUTIONWITH